A computational graph in a deep neural network (DNN) denotes a specific data flow diagram (DFD) composed of many tensors and operators. Existing toolkits for visualizing computational graphs are not applicable when the structure is highly complicated and large-scale (e.g., BERT [1]). To address this problem, we propose leveraging a suite of visual simplification techniques, including a cycle-removing method, a module-based edge-pruning algorithm, and an isomorphic subgraph stacking strategy. We design and implement an interactive visualization system that is suitable for computational graphs with up to 10 thousand elements. Experimental results and usage scenarios demonstrate that our tool reduces 60% elements on average and hence enhances the performance for recognizing and diagnosing DNN models. Our contributions are integrated into an open-source DNN visualization toolkit, namely, MindInsight [2].
翻译:深神经网络(DNN)中的计算图表示由多个数字器和操作员组成的特定数据流图(DFD)。当计算图的结构非常复杂和大规模时,现有的可视化工具不适用(例如,BERT[1])。为解决这一问题,我们提议利用一系列视觉简化技术,包括循环移动方法、基于模块的边缘操纵算法和无形态子图堆叠策略。我们设计和实施一个适合最多10 000个元素的计算图的交互式可视化系统。实验结果和使用情景表明,我们的工具平均减少了60%元素,从而增强了识别和诊断DNNN模型的性能。我们的贡献被纳入了一个开放源的 DNN视觉工具包,即MindInsight [2]。