项目名称: 基于氧化锌纳米棒阵列的杂化钙钛矿太阳能电池研究

项目编号: No.61504145

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 王丽丹

作者单位: 中国科学院长春应用化学研究所

项目金额: 21万元

中文摘要: 钙钛矿太阳能电池的预期效率远超出硅基太阳能电池,使其成为目前光伏技术的热点之一。通常有机/无机杂化钙钛矿太阳能电池采用介孔TiO2作为电子收集电极,但是制备过程需要高温退火。ZnO具有类似的能级结构,电子迁移率明显高于TiO2,各种ZnO材料均可采用低温工艺制备。因此,ZnO有望取代TiO2作为电子收集电极,并获得同样甚至更高的光电转化效率。目前基于ZnO的钙钛矿太阳能电池的研究还处于起始阶段,仅有的几个报导的器件效率明显低于TiO2,这可能与ZnO和钙钛矿复合薄膜的微观结构、晶体质量等有关。本项目拟采用ZnO纳米棒阵列作为电子收集电极,对其进行量子点敏化和紫外臭氧的改性处理来改善与钙钛矿层的界面性能,并且研究p型化合物替代传统的Spiro-OMeTAD作为空穴传输层,来提高器件的稳定性和降低器件的成本。并通过研究器件的微观物理过程和物理机制,探索有效提高器件效率的方法与途径。

中文关键词: 钙钛矿;太阳能电池;氧化锌纳米棒;化合物空穴传输层;量子点敏化

英文摘要: Perovskite solar cell is one of the research hotspots of solar photovoltaic technology due to its higher efficiency than Si solar cells. Usually the mesoporous titanium dioxide (TiO2) is used as electron collecting electrode in the hybrid perovskite solar cells, with the process of high temperature annealing. The band structure of Zinc Oxide (ZnO) is similar with TiO2, but the electron mobility of the ZnO is much higher. In addition, ZnO can be prepared by several of low temperature processes. Therefore, ZnO is expected to replace TiO2 as the electron collecting electrode in the hybrid perovskite solar cells with the similar or higher conversion efficiency. At present, the research on hybrid perovskite solar cells using ZnO as electron collecting electrode only started just now and a few reports demonstrate that the conversion efficiency is lower than the device based on TiO2. The results may be associated with the microstructure, crystal quality and other factors. In this project ZnO nanorod arrays sensitized by quantum dots or treated by UV-Ozone are introduced as the electron collecting electrode in the hybrid perovskite solar cells. The stability of the device will be improved and the cost of the device will be reduced by the replacement of Spiro-OMeTAD with p-type compound. And the efficiency of the device will be improved by the research of the microphysical process and physical mechanism.

英文关键词: perovskite; solar cells;ZnO nanorods;compound hole-transport-material;quantum dots sensitized

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】受限评委下双执行者的高效连续控制
专知会员服务
16+阅读 · 2021年12月22日
【Jon Paul Janet】机器学习化学应用,153页ppt
专知会员服务
43+阅读 · 2021年12月5日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
小贴士
相关VIP内容
【AAAI2022】受限评委下双执行者的高效连续控制
专知会员服务
16+阅读 · 2021年12月22日
【Jon Paul Janet】机器学习化学应用,153页ppt
专知会员服务
43+阅读 · 2021年12月5日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
NeurIPS 2021 | 微观特征混合进行宏观时间序列预测
专知会员服务
40+阅读 · 2021年11月12日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
31+阅读 · 2021年5月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员