We present a new approach-the ALVar estimator-to estimation of asymptotic variance in sequential Monte Carlo methods, or, particle filters. The method, which adjusts adaptively the lag of the estimator proposed in [Olsson, J. and Douc, R. (2019). Numerically stable online estimation of variance in particle filters. Bernoulli, 25(2), pp. 1504-1535] applies to very general distribution flows and particle filters, including auxiliary particle filters with adaptive resampling. The algorithm operates entirely online, in the sense that it is able to monitor the variance of the particle filter in real time and with, on the average, constant computational complexity and memory requirements per iteration. Crucially, it does not require the calibration of any algorithmic parameter. Estimating the variance only on the basis of the genealogy of the propagated particle cloud, without additional simulations, the routine requires only minor code additions to the underlying particle algorithm. Finally, we prove that the ALVar estimator is consistent for the true asymptotic variance as the number of particles tends to infinity and illustrate numerically its superiority to existing approaches.
翻译:我们提出了一个新的方法,即ALVar 估计在相继的蒙特卡洛方法或粒子过滤器中的无症状差异。该方法适应了[Olsson, J. 和Douc, R. (2019年) 中提议的测算器的滞后情况。微粒过滤器差异的数值稳定的在线估计适用于非常普遍的分布流和粒子过滤器,包括具有适应性再抽样的辅助粒子过滤器。算法完全在线运作,即它能够实时监测粒子过滤器的差异,并且能够平均地根据迭代法对恒定的计算复杂性和内存要求进行调整。典型地说,它并不要求对任何算法参数进行校准。仅根据传播粒子云的基因学来估计差异,不做额外的模拟,常规只需要对基础粒子算法作少量的编码添加。最后,我们证明ALvaar 估测器在实际的粒子放大率方面是一致的,其正统的,其微量性是显示其数字差异的数值。