The projection filter is a technique for approximating the solutions of optimal filtering problems. In projection filters, the Kushner--Stratonovich stochastic partial differential equation that governs the propagation of the optimal filtering density is projected to a manifold of parametric densities, resulting in a finite-dimensional stochastic differential equation. Despite the fact that projection filters are capable of representing complicated probability densities, their current implementations are limited to Gaussian family or unidimensional filtering applications. This work considers a combination of numerical integration and automatic differentiation to construct projection filter algorithms for more generic problems. Specifically, we provide a detailed exposition of this combination for the manifold of the exponential family, and show how to apply the projection filter to multidimensional cases. We demonstrate numerically that based on comparison to a finite-difference solution to the Kushner--Stratonovich equation and a bootstrap particle filter with systematic resampling, the proposed algorithm retains an accurate approximation of the filtering density while requiring a comparatively low number of quadrature points. Due to the sparse-grid integration and automatic differentiation used to calculate the expected values of the natural statistics and the Fisher metric, the proposed filtering algorithms are highly scalable. They therefore are suitable to many applications in which the number of dimensions exceeds the practical limit of particle filters, but where the Gaussian-approximations are deemed unsatisfactory.


翻译:投影过滤器是一种接近最佳过滤问题解决方案的技术。 在投影过滤器中, 指导最佳过滤密度传播的最佳过滤密度的 Kushner- Stratonovich 随机偏差部分方程式被预测成多种偏差密度, 从而形成一个有限维的随机偏差方程。 尽管投影过滤器能够代表复杂概率密度, 但其目前的实施仅限于高斯族或单维过滤应用软件。 这项工作考虑了数字整合和自动区分的结合, 以构建针对更多通用问题的投影过滤过滤算法。 具体地说, 我们为指数式家族的方格提供了这种组合的详细解析, 并展示了如何将投影过滤器应用于多维情况。 我们用数字来证明, 根据对Kushner- Stratonovich 方程式和带粒子过滤器的精确度的比较, 拟议的算法保留过滤密度的准确近似值, 但需要相对较低的四维点。 具体说, 由于星格网集整合和自动分法, 因此, 用于计算高清晰度矩阵应用的算值, 因此,, 高额 的 用于计算 的 的 的 的 的 的 的 的 的 的 的 的, 的 的 的 的 的 高压值 的 高压值 是 的 的 的 的 的 高压 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
70+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
51+阅读 · 2020年12月14日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员