The integration of algorithmic components into neural architectures has gained increased attention recently, as it allows training neural networks with new forms of supervision such as ordering constraints or silhouettes instead of using ground truth labels. Many approaches in the field focus on the continuous relaxation of a specific task and show promising results in this context. But the focus on single tasks also limits the applicability of the proposed concepts to a narrow range of applications. In this work, we build on those ideas to propose an approach that allows to integrate algorithms into end-to-end trainable neural network architectures based on a general approximation of discrete conditions. To this end, we relax these conditions in control structures such as conditional statements, loops, and indexing, so that resulting algorithms are smoothly differentiable. To obtain meaningful gradients, each relevant variable is perturbed via logistic distributions and the expectation value under this perturbation is approximated. We evaluate the proposed continuous relaxation model on four challenging tasks and show that it can keep up with relaxations specifically designed for each individual task.
翻译:将算法组成部分纳入神经结构最近引起越来越多的注意,因为这样可以对神经网络进行培训,并采用新的监督形式,如订购限制或光影,而不是使用地面真相标签。许多实地方法侧重于持续放松具体任务,并在此背景下显示有希望的结果。但是,对单一任务的重视也把拟议概念的适用性限制在狭窄的应用范围。在这项工作中,我们利用这些想法提出一种方法,以便能够将算法纳入基于离散条件一般近似的端到端可训练神经网络结构。为此,我们在有条件声明、循环和索引等控制结构中放松这些条件,从而使由此产生的算法可以顺利地不同。为了获得有意义的梯度,每个相关的变量都通过后勤分配和这种扰动的预期值相近。我们评估了四种具有挑战性的任务的拟议持续放松模式,并表明它能够跟上为每项任务专门设计的放松。