Modern object detectors are vulnerable to adversarial examples, which may bring risks to real-world applications. The sparse attack is an important task which, compared with the popular adversarial perturbation on the whole image, needs to select the potential pixels that is generally regularized by an $\ell_0$-norm constraint, and simultaneously optimize the corresponding texture. The non-differentiability of $\ell_0$ norm brings challenges and many works on attacking object detection adopted manually-designed patterns to address them, which are meaningless and independent of objects, and therefore lead to relatively poor attack performance. In this paper, we propose Adversarial Semantic Contour (ASC), an MAP estimate of a Bayesian formulation of sparse attack with a deceived prior of object contour. The object contour prior effectively reduces the search space of pixel selection and improves the attack by introducing more semantic bias. Extensive experiments demonstrate that ASC can corrupt the prediction of 9 modern detectors with different architectures (\e.g., one-stage, two-stage and Transformer) by modifying fewer than 5\% of the pixels of the object area in COCO in white-box scenario and around 10\% of those in black-box scenario. We further extend the attack to datasets for autonomous driving systems to verify the effectiveness. We conclude with cautions about contour being the common weakness of object detectors with various architecture and the care needed in applying them in safety-sensitive scenarios.


翻译:现代天体探测器很容易受到对抗性例子的影响,这可能会给现实世界应用带来风险。 稀少的攻击是一项重要任务, 与整个图像上流行的对抗性干扰相比, 需要选择通常以 $_ 0$- 诺姆 调制成的潜在的像素, 并同时优化相应的纹理。 $\ ell_ 0$ 规范的无差别性带来了挑战, 许多攻击性物体探测工作采用人工设计的模式来解决它们, 这些模式毫无意义, 与物体无关, 因而导致相对较低的攻击性能。 在本文中, 我们提议对巴伊西亚的稀释性攻击配方作出一个估计, 在目标轮廓之前受欺骗。 对象轮廓之前有效地减少了像项选择的搜索空间, 并通过引入更多的语义偏差来改进攻击性。 广泛的实验表明, SC 可以破坏9个现代探测器的预测, 与不同的结构( 例如, 舞台、 两台和变换器) 导致攻击性表现相对差。 MAP 对巴伊斯 的变形设计图案的稀小于5°,, 在常规变变变变变变的系统中, 我们的变变变变变变变的变变变变变变变变变变变变变变变变变变变变的变变变变变变变变变变的变变变变变变变变变变变变变变变变变变变变变变变变变变变变变的变变变变变变变变变变变变的变变变变变的变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变的变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变变</s>

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员