This paper proposes a dual skipping guidance scheme with hybrid scoring to accelerate document retrieval that uses learned sparse representations while still delivering a good relevance. This scheme uses both lexical BM25 and learned neural term weights to bound and compose the rank score of a candidate document separately for skipping and final ranking, and maintains two top-k thresholds during inverted index traversal. This paper evaluates time efficiency and ranking relevance of the proposed scheme in searching MS MARCO TREC datasets.
翻译:本文件建议采用双重跳过指导办法,采用混合评分,以加快文件检索,在提供良好关联性的同时,使用经验稀疏的表述方式,同时利用经验丰富的神经-神经-神经-重量来约束和构成候选人文件的分级,分别用于跳过和最后排名,并在反向指数穿梭期间维持两个最高至k的阈值。本文件评估了在搜索MS MARCO TREC数据集方面拟议办法的时间效率和排序相关性。