Neural field-based 3D representations have recently been adopted in many areas including SLAM systems. Current neural SLAM or online mapping systems lead to impressive results in the presence of simple captures, but they rely on a world-centric map representation as only a single neural field model is used. To define such a world-centric representation, accurate and static prior information about the scene, such as its boundaries and initial camera poses, are required. However, in real-time and on-the-fly scene capture applications, this prior knowledge cannot be assumed as fixed or static, since it dynamically changes and it is subject to significant updates based on run-time observations. Particularly in the context of large-scale mapping, significant camera pose drift is inevitable, necessitating the correction via loop closure. To overcome this limitation, we propose NEWTON, a view-centric mapping method that dynamically constructs neural fields based on run-time observation. In contrast to prior works, our method enables camera pose updates using loop closures and scene boundary updates by representing the scene with multiple neural fields, where each is defined in a local coordinate system of a selected keyframe. The experimental results demonstrate the superior performance of our method over existing world-centric neural field-based SLAM systems, in particular for large-scale scenes subject to camera pose updates.


翻译:神经场表示法近来在很多领域内被使用,包括SLAM系统。当前的神经SLAM或联机地图系统可以在简单捕捉的情况下取得卓越的成果,但是它们依赖于一种以世界为中心的地图表示,因为仅使用单个神经场模型来定义这种世界为中心的表示方法。要定义这种以世界为中心的表示方法,需要关于场景的准确和静态的先前信息,例如场景的边界和初始相机姿态。然而,在实时和即时场景捕获应用中,不能假设这种先前知识是固定的或静态的,因为它动态变化且受到根据运行时观察所做的重要更新。特别是在大规模建图的情况下,相机姿态漂移是不可避免的,需要通过环路闭合进行校正。为了克服这种局限性,本文提出了一种称为NEWTON的方法,它是一种面向视角的映射方法,可以基于运行时观察动态地构建神经场。与前作不同,我们的方法可以使用环路闭合进行相机姿态更新,并通过使用多个神经场来表示场景,其中每个场都在所选关键帧的本地坐标系中定义,从而实现场景边界的更新。实验结果表明,相对于现有的以世界为中心的神经场SLAM系统,在大规模场景中进行相机姿态更新方面,我们的方法表现更优秀。

0
下载
关闭预览

相关内容

【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【泡泡一分钟】学习紧密的几何特征(ICCV2017-17)
泡泡机器人SLAM
20+阅读 · 2018年5月8日
【泡泡一分钟】动态环境下稳健的单目SLAM
泡泡机器人SLAM
13+阅读 · 2018年3月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
12+阅读 · 2021年7月26日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员