Camera calibration is a crucial technique which significantly influences the performance of many robotic systems. Robustness and high precision have always been the pursuit of diverse calibration methods. State-of-the-art calibration techniques based on classical Zhang's method, however, still suffer from environmental noise, radial lens distortion and sub-optimal parameter estimation. Therefore, in this paper, we propose a hybrid camera calibration framework which combines learning-based approaches with traditional methods to handle these bottlenecks. In particular, this framework leverages learning-based approaches to perform efficient distortion correction and robust chessboard corner coordinate encoding. For sub-pixel accuracy of corner detection, a specially-designed coordinate decoding algorithm with embed outlier rejection mechanism is proposed. To avoid sub-optimal estimation results, we improve the traditional parameter estimation by RANSAC algorithm and achieve stable results. Compared with two widely-used camera calibration toolboxes, experiment results on both real and synthetic datasets manifest the better robustness and higher precision of the proposed framework. The massive synthetic dataset is the basis of our framework's decent performance and will be publicly available along with the code at https://github.com/Easonyesheng/CCS.


翻译:机械校准是影响许多机器人系统性能的关键技术。强健和高度精准始终是追求多种校准方法。但是,基于经典张氏法的先进校准技术仍然受到环境噪音、放射镜头扭曲和亚最佳参数估计的影响。因此,在本文件中,我们提议了一个混合摄影校准框架,将基于学习的校准方法与处理这些瓶颈的传统方法结合起来。特别是,这一框架利用基于学习的方法来实施高效的扭曲校正和强大的象棋板角协调编码。对于角检测的分像素精度,提出了特别设计的与嵌入外部拒绝机制的编码协调算法。为了避免亚最佳估计结果,我们改进了RANSAC算法的传统参数估计,并取得了稳定的结果。与两个广泛使用的摄影校准工具箱相比,对真实和合成数据集的实验结果显示了拟议框架的更稳健性和更高精准性。大规模合成数据集是我们框架框架的正确性基础,将随代码(http://CSOS)公开提供。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
21+阅读 · 2020年10月11日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员