We study the \emph{Radical Identity Testing} problem (RIT): Given an algebraic circuit representing a multivariate polynomial $f(x_1, \dots, x_k)$ and nonnegative integers $a_1, \dots, a_k$ and $d_1, \dots,$ $d_k$, written in binary, test whether the polynomial vanishes at the \emph{real radicals} $\sqrt[d_1]{a_1}, \dots,\sqrt[d_k]{a_k}$, i.e., test whether $f(\sqrt[d_1]{a_1}, \dots, \sqrt[d_k]{a_k}) = 0$. We place the problem in {\coNP} assuming the Generalised Riemann Hypothesis (GRH), improving on the straightforward {\PSPACE} upper bound obtained by reduction to the existential theory of reals. Next we consider a restricted version, called $2$-RIT, where the radicals are square roots of prime numbers, written in binary. It was known since the work of Chen and Kao~\cite{chen-kao} that $2$-RIT is at least as hard as the polynomial identity testing problem, however no better upper bound than {\PSPACE} was known prior to our work. We show that $2$-RIT is in {\coRP} assuming GRH and in {\coNP} unconditionally. %While prior work~\cite{blomer98, chen-kao} on {\rit} relied on methods based on numerical approximation, we use a symbolic approach and reduce the problem to evaluating the polynomial modulo suitable prime ideals in the ring of integers of the number field $\mathbb{Q}(\sqrt[d_1]{a_1}, \dots, \sqrt[d_k]{a_k})$. Our proof relies on theorems from algebraic and analytic number theory, such as the Chebotarev density theorem and quadratic reciprocity.
翻译:我们研究的是 {emph{ Radical 身份测试} 问题 (RIT): 在一个代表多变多式多式多式美元 $f(x_1,\dots, x_k) 和非负式整数 $a_1,\dts, a_k$和$d_1, evdts, $d_k$, 以二进制写成, 测试多式游戏是否在\ emph{ real rits} $_sqrtrts(d_1) 中消失, rockerrt} a_1},\dd_krts,\d_crt_a_k} 美元, 以及非负式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式各式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多式多