The ability to make accurate predictions with quantified uncertainty provides a crucial foundation for the successful management of a geothermal reservoir. Conventional approaches for making predictions using geothermal reservoir models involve estimating unknown model parameters using field data, then propagating the uncertainty in these estimates through to the predictive quantities of interest. However, the unknown parameters are not always of direct interest; instead, the predictions are of primary importance. Data space inversion (DSI) is an alternative methodology that allows for the efficient estimation of predictive quantities of interest, with quantified uncertainty, that avoids the need to estimate model parameters entirely. In this paper, we evaluate the applicability of DSI to geothermal reservoir modelling. We first review the processes of model calibration, prediction and uncertainty quantification from a Bayesian perspective, and introduce data space inversion as a simple, efficient technique for approximating the posterior predictive distribution. We then apply the DSI framework to two model problems in geothermal reservoir modelling. We evaluate the accuracy and efficiency of DSI relative to other common methods for uncertainty quantification, study how the number of reservoir model simulations affects the resulting approximation to the posterior predictive distribution, and demonstrate how the framework can be enhanced through the use of suitable reparametrisations. Our results support the idea that data space inversion is a simple, robust and efficient technique for making predictions with quantified uncertainty using geothermal reservoir models, providing a useful alternative to more conventional approaches.
翻译:暂无翻译