Existing calibration algorithms address the problem of covariate shift via unsupervised domain adaptation. However, these methods suffer from the following limitations: 1) they require unlabeled data from the target domain, which may not be available at the stage of calibration in real-world applications and 2) their performances heavily depend on the disparity between the distributions of the source and target domains. To address these two limitations, we present novel calibration solutions via domain generalization which, to the best of our knowledge, are the first of their kind. Our core idea is to leverage multiple calibration domains to reduce the effective distribution disparity between the target and calibration domains for improved calibration transfer without needing any data from the target domain. We provide theoretical justification and empirical experimental results to demonstrate the effectiveness of our proposed algorithms. Compared against the state-of-the-art calibration methods designed for domain adaptation, we observe a decrease of 8.86 percentage points in expected calibration error, equivalently an increase of 35 percentage points in improvement ratio, for multi-class classification on the Office-Home dataset.


翻译:现有校准算法通过不受监督的域适应处理共变式转换问题,但是,这些方法受到以下限制:(1) 它们需要目标域的未标记数据,而在现实应用的校准阶段可能无法提供这些数据;(2) 它们的性能在很大程度上取决于源和目标域的分布差异。为了解决这两个限制,我们通过域的简单化提出新颖的校准解决方案,而据我们所知,这些解决方案是同类的首个。我们的核心想法是利用多个校准域来减少目标与校准域之间的有效分布差距,以改进校准转让,而不需要目标域的任何数据。我们提供了理论理由和经验实验结果,以证明我们提议的算法的有效性。与为区域适应设计的最先进的校准方法相比,我们观察到预期校准误差减少了8.86个百分点,相当于改进率增加了35个百分点,用于办公室内部数据集的多级分类。

0
下载
关闭预览

相关内容

【阿里巴巴-CVPR2020】频域学习,Learning in the Frequency Domain
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Arxiv
8+阅读 · 2020年8月30日
VIP会员
相关资讯
【资源】领域自适应相关论文、代码分享
专知
31+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Top
微信扫码咨询专知VIP会员