Initially designed for independent datas, low-rank matrix completion was successfully applied in many domains to the reconstruction of partially observed high-dimensional time series. However, there is a lack of theory to support the application of these methods to dependent datas. In this paper, we propose a general model for multivariate, partially observed time series. We show that the least-square method with a rank penalty leads to reconstruction error of the same order as for independent datas. Moreover, when the time series has some additional properties such as periodicity or smoothness, the rate can actually be faster than in the independent case.


翻译:最初为独立数据设计,低级矩阵完成率在许多领域成功地用于重建部分观测的高维时间序列,然而,缺乏理论支持将这些方法应用于依赖数据。在本文件中,我们提出了一个多变量、部分观测的时间序列通用模型。我们表明,按等级处罚的最小方位方法会导致与独立数据相同的顺序重整错误。此外,当时间序列有一些额外特性,如周期性或平稳性时,该比率实际上可能比独立案件更快。

0
下载
关闭预览

相关内容

【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Top
微信扫码咨询专知VIP会员