We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
翻译:我们展示了可解释的全神经普通差异方程式(iMODE)方法,以便从物理参数各不相同的多动态系统的轨迹中迅速学习一般(即不是特定参数)动态。iMODE方法学习元知识,即动态系统实例的力场功能变化,而不知道物理参数,采用双级优化框架:外层在研究过的动态系统实例中捕捉共同力场形式,内部适应单个系统实例。先验的物理知识可以很容易地嵌入神经网络结构结构中,如诱导性偏差,如保守的力场和Eucliidean对称。随着所学的元知识,iMODE可以在数秒内模拟一个看不见的系统,并反过来揭示关于一个系统的物理参数的知识,或作为“测量”带有观测轨迹的无形系统物理参数的神经高。我们测试iMODE方法在双向、双向笔、Van der Pol、Slinky和反反向放大系统上的有效性。