Optical Coherence Tomography is a technique used to scan the Retina of the eye and check for tears. In this paper, we develop a Convolutional Neural Network Architecture for OCT scan classification. The model is trained to detect Retinal tears from an OCT scan and classify the type of tear. We designed a block-based approach to accompany a pre-trained VGG-19 using Transfer Learning by writing customised layers in blocks for better feature extraction. The approach achieved substantially better results than the baseline we initially started out with.
翻译:光学一致性地形学是一种用于扫描眼睛视网膜和检查眼泪的技术。 在本文中, 我们开发了一个用于 OCT 扫描分类的进化神经网络架构。 该模型经过培训, 以检测 OCT 扫描的视网膜眼泪并对撕裂类型进行分类。 我们设计了一个基于街区的方法, 与经过预先训练的VGG-19 转移学习相配套, 将自定义的层分写成块, 以更好地提取特征 。 这种方法取得了比我们最初开始的基线要好得多的结果 。