A recent trend in Natural Language Processing is the exponential growth in Language Model (LM) size, which prevents research groups without a necessary hardware infrastructure from participating in the development process. This study investigates methods for Knowledge Distillation (KD) to provide efficient alternatives to large-scale models. In this context, KD means extracting information about language encoded in a Neural Network and Lexical Knowledge Databases. We developed two methods to test our hypothesis that efficient architectures can gain knowledge from LMs and extract valuable information from lexical sources. First, we present a technique to learn confident probability distribution for Masked Language Modeling by prediction weighting of multiple teacher networks. Second, we propose a method for Word Sense Disambiguation (WSD) and lexical KD that is general enough to be adapted to many LMs. Our results show that KD with multiple teachers leads to improved training convergence. When using our lexical pre-training method, LM characteristics are not lost, leading to increased performance in Natural Language Understanding (NLU) tasks over the state-of-the-art while adding no parameters. Moreover, the improved semantic understanding of our model increased the task performance beyond WSD and NLU in a real-problem scenario (Plagiarism Detection). This study suggests that sophisticated training methods and network architectures can be superior over scaling trainable parameters. On this basis, we suggest the research area should encourage the development and use of efficient models and rate impacts resulting from growing LM size equally against task performance.


翻译:最近自然语言处理的趋势是语言模型(LM)规模的指数增长,这使得没有必要硬件基础设施的研究群体无法参与发展进程。本研究调查了知识蒸馏(KD)的方法,以便为大型模型提供有效的替代方法。在这方面,KD意味着提取关于神经网络和词汇知识数据库编码的语言的信息。我们开发了两种方法来测试我们的假设,即高效结构可以从LMS获得知识,并从词汇来源获取宝贵的信息。首先,我们展示了一种通过预测多个教师网络的权重来学习隐蔽语言模型的可靠概率分布的技术。第二,我们为Word Sense Debradiguation(WSD)和LLCiscial KD提出了一种方法,该方法很一般,足以适用于许多LMS。我们的结果表明,与多个教师一起的KD可以改进培训前方法,但不会丢失LM的特性,从而导致在自然语言理解(NLU)中提高了在状态上的表现,同时没有增加参数。此外,我们提出的“SmanPretical Developal laisal laisal laism laisal laction laction laction laction laction laction lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax lax labil lax lax labild lax labild laut lax lax lax lax labil lax lax labil lautd laut laut laut labil labal labal labal lab labal labal labal labal labal labal labal labal labal labal labal lad ro lad lad lad lad labal lab labal lab labd ro ro 要求,这可以鼓励在我们精度

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月21日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2018年9月5日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员