For a long time, anomaly localization has been widely used in industries. Previous studies focused on approximating the distribution of normal features without adaptation to a target dataset. However, since anomaly localization should precisely discriminate normal and abnormal features, the absence of adaptation may make the normality of abnormal features overestimated. Thus, we propose Coupled-hypersphere-based Feature Adaptation (CFA) which accomplishes sophisticated anomaly localization using features adapted to the target dataset. CFA consists of (1) a learnable patch descriptor that learns and embeds target-oriented features and (2) scalable memory bank independent of the size of the target dataset. And, CFA adopts transfer learning to increase the normal feature density so that abnormal features can be clearly distinguished by applying patch descriptor and memory bank to a pre-trained CNN. The proposed method outperforms the previous methods quantitatively and qualitatively. For example, it provides an AUROC score of 99.5% in anomaly detection and 98.5% in anomaly localization of MVTec AD benchmark. In addition, this paper points out the negative effects of biased features of pre-trained CNNs and emphasizes the importance of the adaptation to the target dataset. The code is publicly available at https://github.com/sungwool/CFA_for_anomaly_localization.


翻译:长期以来,各行业都广泛使用异常本地化。先前的研究重点是,在不适应目标数据集的情况下,对正常特征的分布进行近似分配,而不对目标数据集进行调整。然而,由于异常本地化应准确地区分正常和异常特征,因此不适应可能会使异常特征的正常性被高估。因此,我们提议采用适应目标数据集的特征,实现复杂的异常本地化,基于双双双双的功能适应(CFA)实现复杂的异常本地化。CFA包括:(1) 学习和嵌入目标导向特征的可学习补丁描述符,和(2) 独立于目标数据集大小的可缩放记忆库。此外,AFAFA采用转移学习来增加正常特征密度,以便通过对预先培训的CNN应用补丁描述和记忆库来明确区分异常性特征。拟议方法在数量和质量上超越了先前的方法。例如,它提供了异常检测为99.5%的AUROC分数和MVTec AD异常本地化基准的98.5%分。此外,该文件还指明了事先培训的常规/CNNC标准对目标的偏差效应的消极影响效应。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员