Gait recognition is instrumental in crime prevention and social security, for it can be conducted at a long distance without the cooperation of subjects. However, existing datasets and methods cannot deal with the most challenging problem in realistic gait recognition effectively: walking in different clothes (CL). In order to tackle this problem, we propose two benchmarks: CASIA-BN-RCC and OUMVLP-RCC, to simulate the cloth-changing condition in practice. The two benchmarks can force the algorithm to realize cross-view and cross-cloth with two sub-datasets. Furthermore, we propose a new framework that can be applied with off-the-shelf backbones to improve its performance in the Realistic Cloth-Changing problem with Progressive Feature Learning. Specifically, in our framework, we design Progressive Mapping and Progressive Uncertainty to extract the cross-view features and then extract cross-cloth features on the basis. In this way, the features from the cross-view sub-dataset can first dominate the feature space and relieve the uneven distribution caused by the adverse effect from the cross-cloth sub-dataset. The experiments on our benchmarks show that our framework can effectively improve the recognition performance in CL conditions. Our codes and datasets will be released after accepted.
翻译:Gait承认在预防犯罪和社会保障方面至关重要,因为它可以在没有主题合作的情况下在长距离内进行,但是,现有的数据集和方法无法在现实的动作识别中有效处理最棘手的问题:穿不同衣服(CL)行走。为了解决这一问题,我们提出了两个基准:CASIA-BN-RCC和UUMVLP-RCC,以模拟实践中的布局变化状况。这两个基准可以迫使算法实现交叉视图和交叉覆盖两个子数据集。此外,我们提出了一个新的框架,可以用现成的骨架来应用,以提高其在随进步特征学习而变化的现实服装问题中的性能。具体地说,在我们的框架内,我们设计了进步绘图和进步不确定性,以提取交叉视图特征,然后在此基础上提取交叉布局特征。这样,交叉视图子数据集的特征可以首先控制地貌空间,并缓解交叉子数据集的不利效应所造成的不均匀分布。我们所接受的基准实验表明,我们的框架在公布后将有效地改进我们所接受的代码。