Facial Expression Recognition (FER) suffers from data uncertainties caused by ambiguous facial images and annotators' subjectiveness, resulting in excursive semantic and feature covariate shifting problem. Existing works usually correct mislabeled data by estimating noise distribution, or guide network training with knowledge learned from clean data, neglecting the associative relations of expressions. In this work, we propose an Adaptive Graph-based Feature Normalization (AGFN) method to protect FER models from data uncertainties by normalizing feature distributions with the association of expressions. Specifically, we propose a Poisson graph generator to adaptively construct topological graphs for samples in each mini-batches via a sampling process, and correspondingly design a coordinate descent strategy to optimize proposed network. Our method outperforms state-of-the-art works with accuracies of 91.84% and 91.11% on the benchmark datasets FERPlus and RAF-DB, respectively, and when the percentage of mislabeled data increases (e.g., to 20%), our network surpasses existing works significantly by 3.38% and 4.52%.
翻译:偏差表现度识别(FER) 由模糊的面部图像和批注者的主观性造成数据不确定性,从而导致显性语义和特征的共变变化问题。 现有的作品通常通过估计噪音分布来纠正错误标签数据,或用从清洁数据中获取的知识指导网络培训,忽视表达方式的联系关系。 在这项工作中,我们提出了一个基于适应图形的功能标准化(AGFN)方法,以保护FER模型免受数据不确定性的影响,方法是使特征分布与表达式关联实现正常化。 具体地说,我们提议建立一个 Poisson 图形生成器,通过取样程序为每个微型插头的样本适应性地构建地形图,并相应设计协调的下行战略,优化拟议的网络。 我们的方法在基准数据集FERPlus和RAF-DB上分别优于91.84%和91.11%的状态,当误标数据的百分比增加(例如,达到20%)时,我们的网络大大超过现有工程3.38%和4.52%。