Flux inversion is the process by which sources and sinks of a gas are identified from observations of gas mole fraction. The inversion often involves running a Lagrangian particle dispersion model (LPDM) to generate sensitivities between observations and fluxes over a spatial domain of interest. The LPDM must be run backward in time for every gas measurement, and this can be computationally prohibitive. To address this problem, here we develop a novel spatio-temporal emulator for LPDM sensitivities that is built using a convolutional variational autoencoder (CVAE). With the encoder segment of the CVAE, we obtain approximate (variational) posterior distributions over latent variables in a low-dimensional space. We then use a spatio-temporal Gaussian process emulator on the low-dimensional space to emulate new variables at prediction locations and time points. Emulated variables are then passed through the decoder segment of the CVAE to yield emulated sensitivities. We show that our CVAE-based emulator outperforms the more traditional emulator built using empirical orthogonal functions and that it can be used with different LPDMs. We conclude that our emulation-based approach can be used to reliably reduce the computing time needed to generate LPDM outputs for use in high-resolution flux inversions.
翻译:螺旋反转是一个从气体摩尔分数的观测中确定气体源和汇的过程。 反转往往涉及运行一个拉格朗日粒子分散模型( LPDM), 以在有关注的空间域内生成观测和通量之间的敏感度。 LPDM 必须在每种气体测量中及时向后运行, 而这可能会是无法计算的 。 为了解决这个问题, 我们在这里开发一个用于LPDM 敏感度的新型电磁模拟器( CPAE ) 。 随着 CVAE 的电解调器段, 我们获得一个近似( 变式) 后方分布, 以在低维空间内对潜在变量产生敏感度。 我们随后使用低空空间的阵列- 模拟器模拟新的变量。 然后通过 CVAE 的解调分解器段生成相似的敏感度。 我们显示, 我们基于 CVAE 的模拟器模拟器超越了在低维空间空间中对潜在变量的分布( 变量) 。 我们用实验式或高分辨率计算, 能够将我们使用的平流的平流计算结果转化为平流的平流的平流的平流计算结果 。