The compute-intensive nature of neural networks (NNs) limits their deployment in resource-constrained environments such as cell phones, drones, autonomous robots, etc. Hence, developing robust sparse models fit for safety-critical applications has been an issue of longstanding interest. Though adversarial training with model sparsification has been combined to attain the goal, conventional adversarial training approaches provide no formal guarantee that the models would be robust against any rogue samples in a restricted space around a benign sample. Recently proposed verified local robustness techniques provide such a guarantee. This is the first paper that combines the ideas from verified local robustness and dynamic sparse training to develop `SparseVLR'-- a novel framework to search verified locally robust sparse networks. Obtained sparse models exhibit accuracy and robustness comparable to their dense counterparts at sparsity as high as 99%. Furthermore, unlike most conventional sparsification techniques, SparseVLR does not require a pre-trained dense model, reducing the training time by 50%. We exhaustively investigated SparseVLR's efficacy and generalizability by evaluating various benchmark and application-specific datasets across several models.


翻译:神经网络(NNs)的计算密集性质限制了其在诸如手机、无人驾驶飞机、自主机器人等资源受限制的环境中的部署。 因此,开发适合安全关键应用的强健稀释模型是一个长期关注的问题。虽然将模型封闭化的对抗性培训结合起来,但常规对抗性培训办法并不能正式保证这些模型在良性样本周围的有限空间对任何无赖样本具有很强的抗御力。最近提出的经核实的本地稳健性技术提供了这样的保证。这是第一份文件,其中综合了经核实的本地稳健性和动态稀缺性培训的观点,以开发“SparseVLR”——一个寻找经核实的本地强健的稀有网络的新框架。获得的稀有模型显示的准确性和稳健性,与在99%的宽广度上密集的对应方相近。此外,与大多数常规的喷雾技术不同的是,SparseVLR并不需要事先经过训练的密集型模型,将培训时间减少50%。我们通过对多种模型评估各种基准和具体应用数据集,详尽地调查了SparseVLR的功效和一般可及可及可贵性。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月16日
Arxiv
13+阅读 · 2021年7月20日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员