Robotic assistance for experimental manipulation in the life sciences is expected to enable favorable outcomes, regardless of the skill of the scientist. Experimental specimens in the life sciences are subject to individual variability hence require intricate algorithms for successful autonomous robotic control. As a use case, we are studying the creation of cranial windows in mice. This operation requires the removal of an 8-mm-circular patch of the skull, which is approximately 300 um thick, but the shape and thickness of the mouse skull significantly varies depending on the strain of mouse, sex, and age. In this work, we propose an autonomous robotic drilling method with no offline planning, consisting of a trajectory planning block with execution-time feedback with completion level recognition based on image and force information. The force information allows for completion-level resolution to increase 10 fold. We evaluate the proposed method in two ways. First, in an eggshell drilling task and achieved a success rate of 95% and average drilling time of 7.1 min out of 20 trials. Second, in postmortem mice and with a success rate of 70% and average drilling time of 9.3 min out of 20 trials.
翻译:暂无翻译