In this paper, we propose a novel Local Macroscopic Conservative (LoMaC) low rank tensor method with discontinuous Galerkin (DG) discretization for the physical and phase spaces for simulating the Vlasov-Poisson (VP) system. The LoMaC property refers to the exact local conservation of macroscopic mass, momentum and energy at the discrete level. The recently developed LoMaC low rank tensor algorithm (arXiv:2207.00518) simultaneously evolves the macroscopic conservation laws of mass, momentum and energy using the kinetic flux vector splitting; then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables. This paper is a generalization of our previous work, but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term. The algorithm is developed in a similar fashion as that for a finite difference scheme, by observing that the DG method can be viewed equivalently in a nodal fashion. With the nodal DG method, assuming a tensorized computational grid, one will be able to (1) derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms, and (2) define a weighted inner product space based on the nodal DG grid points. The algorithm can be extended to the high dimensional problems by hierarchical Tucker decomposition of solution tensors and a corresponding conservative projection algorithm. In a similar spirit, the algorithm can be extended to DG methods on nodal points of an unstructured mesh, or to other types of discretization, e.g. the spectral method in velocity direction. Extensive numerical results are performed to showcase the efficacy of the method.


翻译:在本文中, 我们提出一种新的本地宏观保守( LoMaC) 低等级调高( LoMac) 方法, 使用不连续的 Galerkin (DG), 用于模拟 Vlasov- Poisson (VP) 系统的物理和阶段空间分解。 LoMaC 属性指的是在离异级别上对宏观质量、 动力和能量进行精确的本地保护。 最近开发的 LoMaC 低等级 Exmor 算法( arXiv: 2207. 00518) 的同时, 利用动态通量矢量矢量分解分解, 使质量、 动力和能量的宏观保护法; 然后, 将低等级的动态解压法分解为分解( DG), 将低等级的动力化法分解( DG ) 推向一个分解( DG), 以不连续的递解( DG) 方法向上, 将一个不连续的递解( DG) 数据解( DG) 以不易变的变压方法进行。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月18日
Arxiv
0+阅读 · 2022年11月17日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员