The rapid development of mobile Internet and sharing economy brings the prosperity of Spatial Crowdsourcing (SC). SC applications assign various tasks according to reported location information of task's requesters and outsourced workers (such as DiDi, MeiTuan and Uber). However, SC-servers are often untrustworthy and the exposure of users' locations raises privacy concerns. In this paper, we design a framework called Geo-MOEA (Multi-Objective Evolutionary Algorithm with Geo-obfuscation) to protect location privacy of workers involved on SC platform in mobile networks environment. We propose an adaptive regionalized obfuscation approach with inference error bounds based on geo-indistinguishability (a strong notion of differential privacy), which is suitable for the context of large-scale location data and task allocations. This enables each worker to report a pseudo-location that is adaptively generated with a personalized inference error threshold. Moreover, as a popular computational intelligence method, MOEA is introduced to optimize the trade-off between SC service availability and privacy protection while ensuring theoretically the most general condition on protection location sets for larger search space. Finally, the experimental results on two public datasets show that our Geo-MOEA approach achieves up to 20% reduction in service quality loss while guaranteeing differential and geo-distortion location privacy.
翻译:移动互联网和共享经济的迅速发展带来了空间人群资源(SC)的繁荣。SC的应用程序根据任务请求者和外包工人(如Didi、MeiTuan和Uber)所报告的位置信息分配了各种任务。然而,SC服务器往往不可信,用户所在地的暴露引起了隐私问题。在本文件中,我们设计了一个称为Geo-MOEA(多客观进化指数与地理模糊指数)的框架,以保护在移动网络环境中参与SC平台的工人的定位隐私。我们建议采用适应性区域化的模糊化方法,根据地理不易分解性(一种强烈的隐私概念)来推断误差,这适合于大规模定位数据和任务分配的背景。这使每个工人能够报告一个以个性化推断错误阈值为适应性生成的假地点。此外,作为流行的计算情报方法,MOEA将优化SC服务提供和隐私保护之间的交易,同时在理论上确保最普遍的地理不易分界界限(一种不同的隐私概念),同时保证在更大范围的空间搜索地点上实现最一般条件,同时保证在更大程度的地理定位上降低空间损失的定位。最后,将公共数据定位定位定位定位定位上实现缩小。