We present an efficient and accurate energy-conserving implicit particle-in-cell~(PIC) algorithm for the electrostatic Vlasov system, with particular emphasis on its high robustness for simulating complex plasma systems with multiple physical scales. This method consists of several indispensable elements: (\romannumeral1) the reformulation of the original Vlasov-Poisson system into an equivalent Vlasov-Amp\`ere system with divergence-/curl-free constraints; (\romannumeral2) a novel structure-preserving Fourier spatial discretization, which exactly preserves these constraints at the discrete level; (\romannumeral3) a preconditioned Anderson-acceleration algorithm for the solution of the highly nonlinear system; and (\romannumeral4) a linearized and uniform approximation of the implicit Crank-Nicolson scheme for various Debye lengths, based on the generalized Ohm's law, which serves as an asymptotic-preserving preconditioner for the proposed method. Numerical experiments are conducted, and comparisons are made among the proposed energy-conserving scheme, the classical leapfrog scheme, and a Strang operator-splitting scheme to demonstrate the superiority of the proposed method, especially for plasma systems crossing physical scales.
翻译:我们为静电Vlasov系统提出了一个高效和准确的节能隐含颗粒-细胞~(PIC)算法,其中特别强调它对于模拟具有多种物理尺度的复杂等离子系统具有很强的超强性。这个方法由若干不可或缺的要素组成:(romannuphal1) 将原Vlasov-Poisson系统改制成一个具有差异/无曲线限制的等效Vlasov-Amp ⁇ ⁇ ere系统;(romannuphal2) 一个新的结构保存Fourier空间离散性算法,它完全保留离散层次的这些限制;(romannuphal3) 为高度非线性系统的解决方案预设的Andersen-加速算法;以及(rmannucolal4) 根据通用的Ohm法,将隐含的Crank-Nicolson计划直线性统一地和统一地对各种Debye长度进行近似近似;该套法是拟议方法的无症状保存的前提条件。进行了数字实验,并在拟议的能源节制中进行了比较,特别是用于显示跨层级系统、特别是跨层平流法化的等离层系统。