Dual complex numbers can represent rigid body motion in 2D spaces. Dual complex matrices are linked with screw theory, and have potential applications in various areas. In this paper, we study low rank approximation of dual complex matrices. We define $2$-norm for dual complex vectors, and Frobenius norm for dual complex matrices. These norms are nonnegative dual numbers. We establish the unitary invariance property of dual complex matrices. We study eigenvalues of square dual complex matrices, and show that an $n \times n$ dual complex Hermitian matrix has exactly $n$ eigenvalues, which are dual numbers. We present a singular value decomposition (SVD) theorem for dual complex matrices, define ranks and appreciable ranks for dual complex matrices, and study their properties. We establish an Eckart-Young like theorem for dual complex matrices, and present an algorithm framework for low rank approximation of dual complex matrices via truncated SVD. The SVD of dual complex matrices also provides a basic tool for Principal Component Analysis (PCA) via these matrices. Numerical experiments are reported.
翻译:2D 空格中的硬体运动。 双重复杂基质与螺旋理论相关,并有可能在多个领域应用。 在本文中, 我们研究双重复杂基质的低级近似值。 我们为双重复杂基质定义了$2 和 Frobenius 规范。 这些规范是非负性的双数。 我们为双重复杂基质建立了单一的变异属性。 我们研究平方双倍复杂基质的二次基值, 并显示一个 $n\time n$的双倍复杂赫米提亚基质有精确的美元双倍值。 我们为双重复杂基质提出了单值解构值(SVD), 定义双复杂基质矩阵的等级和明显等级, 并研究其特性。 我们为双重复杂基质建立了Eckart- Young 等主标值, 并为通过 trunced SVD 的双倍复杂基质基质的低级近似值提供了一个算法框架。 双倍复杂基质基质的SVD 也为通过这些基质分析提供了基本工具。