In many statistical problems the hypotheses are naturally divided into groups, and the investigators are interested to perform group-level inference, possibly along with inference on individual hypotheses. We consider the goal of discovering groups containing $u$ or more signals with group-level false discovery rate (FDR) control. This goal can be addressed by multiple testing of partial conjunction hypotheses with a parameter $u,$ which reduce to global null hypotheses for $u=1.$ We consider the case where the partial conjunction $p$-values are combinations of within-group $p$-values, and obtain sufficient conditions on (1) the dependencies among the $p$-values within and across the groups, (2) the combining method for obtaining partial conjunction $p$-values, and (3) the multiple testing procedure, for obtaining FDR control on partial conjunction discoveries. We consider separately the dependencies encountered in the meta-analysis setting, where multiple features are tested in several independent studies, and the $p$-values within each study may be dependent. Based on the results for this setting, we generalize the procedure of Benjamini, Heller, and Yekutieli (2009) for assessing replicability of signals across studies, and extend their theoretical results regarding FDR control with respect to replicability claims.


翻译:在许多统计问题中,假设自然被分为若干组,调查人员有兴趣进行集团一级的推断,可能还想对个别假设进行推断。我们考虑的是发现含有美元或更多美元信号的团体与集团一级虚假发现率(FDR)控制的目标。这一目标可以通过对部分组合假设进行多次测试,并设定一个参数$u(美元),美元,该参数将美元减为全球无效假设,将美元减为1美元。我们认为,部分组合美元价值是集团内部价值的组合,并获得以下充分条件:(1) 美元价值在集团内部和集团之间的依赖关系;(2) 将获得部分组合美元价值的合并方法和(3) 多重测试程序结合起来,对部分组合发现进行FDR控制。我们分别考虑在元分析环境中遇到的相互依存关系,在几项独立研究中测试多种特征,每项研究中的美元价值可能取决于以下因素:(1) 依据这一结果,我们将部分组合美元价值在集团内部和集团之间具有依赖性;(2) 将部分组合美元价值的值与集团内部和集团之间具有依赖性;(2) 组合获得部分组合价值的美元价值的组合;(2) 获得部分组合美元价值的组合;(3) 对部分组合获得部分组合价值的美元价值的合并方法;(3) 和多重测试程序,以获得部分关联发现;我们普遍地评估关于Ben-Bell-Bell-Ral-Ral-C-C-R-R-R-R-C-R-R-S-S-C-R-R-R-R-R-R-R-R-R-C-S-S-S-S-R-R-R-R-R-R-C-R-R-R-C-C-C-R-R-R-R-C-R-R-R-R-R-R-C-R-R-R-C-C-R-R-R-R-C-R-R-C-C-C-C-C-C-C-C-C-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R-R

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
1+阅读 · 2021年7月7日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员