Requirements elicitation interviews are a widely adopted technique, where the interview success heavily depends on the interviewer's preparedness and communication skills. Students can enhance these skills through practice interviews. However, organizing practice interviews for many students presents scalability challenges, given the time and effort required to involve stakeholders in each session. To address this, we propose REIT, an extensible architecture for Requirements Elicitation Interview Training system based on emerging educational technologies. REIT consists of two phases: the interview phase, wherein students act as interviewers while the system assumes the role of an interviewee, and the feedback phase, during which the system assesses students' performance and offers contextual and behavioral feedback to enhance their interviewing skills. We demonstrate the applicability of REIT through two implementations: RoREIT with a physical robotic agent and VoREIT with a virtual voice-only agent. We empirically evaluated both instances with a group of graduate students. The participants appreciated both systems. They demonstrated higher learning gain when trained with RoREIT, but they found VoREIT more engaging and easier to use. These findings indicate that each system has its distinct benefits and drawbacks, suggesting that \gensys{} can be configured for various educational settings based on preferences and available resources.
翻译:暂无翻译