We propose a new model of asynchronous batch codes that allow for parallel recovery of information symbols from a coded database in an asynchronous manner, i.e. when different queries take different time to process. Then, we show that the graph-based batch codes studied in Rawat et al., IEEE Trans. on Inform. Theory, Apr. 2016, are asynchronous. Further, we demonstrate that hypergraphs of Berge girth at least 4, respectively at least 3, yield graph-based asynchronous batch codes, respectively private information retrieval (PIR) codes. We prove the hypergraph-theoretic proposition that the maximum number of hyperedges in a hypergraph of a fixed Berge girth equals the quantity in a certain generalization of the hypergraph-theoretic (6,3)-problem, first posed by Brown, Erd\H os and S\'os. We then apply the constructions and bounds by Erd\H os, Frankl and R\"odl about this generalization of the (6,3)-problem, known as the (3$r$-3,$r$)-problem, to obtain batch code constructions and bounds on the redundancy of the graph-based asynchronous batch and PIR codes. Finally, we show that the optimal redundancy $\rho(k)$ of graph-based asynchronous batch codes of dimension $k$ with the query size $t=3$ is $2\sqrt{k}$. Moreover, for a general fixed value of $t \ge 4$, $\rho(k) = O\left({k}^{1/(2-\epsilon)}\right)$ for any small $\epsilon>0$. For a general value of $t \ge 4$, $\lim_{k \rightarrow \infty} \rho(k)/\sqrt{k} = \infty$.
翻译:我们提出一个新的非同步批量代码模式 {{{{{{{{{{{{{{{{{{{{{{{}元}批量代码,允许以非同步的方式从一个编码数据库中平行恢复信息符号,即当不同的查询需要不同的时间来处理。然后,我们显示在Rawat 等人(IEEE Trans.) 和消息中研究的基于图形的批量代码数量。 理论, Apr.2016, 是非同步的。 此外, 我们展示了Berge girth至少至少4, 至少3, 产生基于图形的平流量代码, 分别为私人信息检索(PIR) 代码。 我们证明了高光量理论学理论的上限数量相当于在Range girt Girt. (6,3)-proll=美元 的某个超时标数量。 我们然后应用基于 Erd\\\} 平面的平面、 Frankl和 R'关于这个普通的平面值(6, 3) 和 平面的平面的平面值。