Graphons, as limits of graph sequences, provide a framework for analyzing the asymptotic behavior of graph neural operators. Spectral convergence of sampled graphs to graphons yields operator-level convergence rates, enabling transferability analyses of GNNs. This note summarizes known bounds under no assumptions, global Lipschitz continuity, and piecewise-Lipschitz continuity, highlighting tradeoffs between assumptions and rates, and illustrating their empirical tightness on synthetic and real data.
翻译:暂无翻译