Elevator systems are one kind of Cyber-Physical Systems (CPSs), and as such, test cases are usually complex and long in time. This is mainly because realistic test scenarios are employed (e.g., for testing elevator dispatching algorithms, typically a full day of passengers traveling through a system of elevators is used). However, in such a context, when needing to reproduce a failure, it is of high benefit to provide the minimal test input to the software developers. This way, analyzing and trying to localize the root-cause of the failure is easier and more agile. Delta debugging has been found to be an efficient technique to reduce failure-inducing test inputs. In this paper, we enhance this technique by first monitoring the environment at which the CPS operates as well as its physical states. With the monitored information, we search for stable states of the CPS during the execution of the simulation. In a second step, we use such identified stable states to help the delta debugging algorithm isolate the failure-inducing test inputs more efficiently. We report our experience of applying our approach into an industrial elevator dispatching algorithm. An empirical evaluation carried out with real operational data from a real installation of elevators suggests that the proposed environment-wise delta debugging algorithm is between 1.3 to 1.8 times faster than the traditional delta debugging, while producing a larger reduction in the failure-inducing test inputs. The results provided by the different implemented delta debugging algorithm versions are qualitatively assessed with domain experts. This assessment provides new insights and lessons learned, such as, potential applications of the delta debugging algorithm beyond debugging.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员