We report on a novel application of computer vision techniques to extract beyond the Standard Model parameters directly from high energy physics flavor data. We propose a simple but novel data representation that transforms the angular and kinematic distributions into "quasi-images", which are used to train a convolutional neural network to perform regression tasks, similar to fitting. As a proof-of-concept, we train a 34-layer Residual Neural Network to regress on these images and determine information about the Wilson Coefficient $C_{9}$ in Monte Carlo simulations of $B^0 \rightarrow K^{*0}\mu^{+}\mu^{-}$ decays. The method described here can be generalized and may find applicability across a variety of experiments.
翻译:暂无翻译