Collaborative 3D object detection exploits information exchange among multiple agents to enhance accuracy of object detection in presence of sensor impairments such as occlusion. However, in practice, pose estimation errors due to imperfect localization would cause spatial message misalignment and significantly reduce the performance of collaboration. To alleviate adverse impacts of pose errors, we propose CoAlign, a novel hybrid collaboration framework that is robust to unknown pose errors. The proposed solution relies on a novel agent-object pose graph modeling to enhance pose consistency among collaborating agents. Furthermore, we adopt a multi-scale data fusion strategy to aggregate intermediate features at multiple spatial resolutions. Comparing with previous works, which require ground-truth pose for training supervision, our proposed CoAlign is more practical since it doesn't require any ground-truth pose supervision in the training and makes no specific assumptions on pose errors. Extensive evaluation of the proposed method is carried out on multiple datasets, certifying that CoAlign significantly reduce relative localization error and achieving the state of art detection performance when pose errors exist. Code are made available for the use of the research community at https://github.com/yifanlu0227/CoAlign.


翻译:合作3D物体探测利用多种物剂之间的信息交流,提高物体探测在诸如封闭等感官障碍情况下的准确性。然而,在实践中,由于不完善的定位造成估算错误,造成估算错误,导致空间信息不匹配,并大大降低协作绩效。为了减轻构成错误的不利影响,我们提议CoAlign,一个对未知错误强健的新颖混合协作框架。拟议解决方案依靠一个新型物剂-对象构成图形模型,以加强协作者之间的一致性。此外,我们还采用一种多尺度的数据聚合战略,以汇总多个空间分辨率的中间特征。与以往的工程相比,需要地面真相作为培训监督的依据,我们提议的CoAlign比较实用,因为它不需要任何地面真相对培训进行监督,也没有对构成错误的具体假设。对拟议方法的大规模评估是在多个数据集上进行的,证明CoAlign显著减少相对的本地化错误,并在出现错误时实现艺术探测性能。在https://github/Co02/yipan.org/yalusulu 上,为研究界提供了使用守则。</s>

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月24日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
12+阅读 · 2021年6月21日
Arxiv
12+阅读 · 2019年4月9日
Arxiv
11+阅读 · 2019年1月24日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员