We explore some connections between association schemes and the analyses of the semidefinite programming (SDP) based convex relaxations of combinatorial optimization problems in the Lov\'{a}sz--Schrijver lift-and-project hierarchy. Our analysis of the relaxations of the stable set polytope leads to bounds on the clique and stability numbers of some regular graphs reminiscent of classical bounds by Delsarte and Hoffman, as well as the notion of deeply vertex-transitive graphs -- highly symmetric graphs that we show arise naturally from some association schemes. We also study relaxations of the hypergraph matching problem, and determine exactly or provide bounds on the lift-and-project ranks of these relaxations. Our proofs for these results also inspire the study of the general hypermatching association scheme. While this scheme is generally non-commutative, we illustrate the usefulness of obtaining commutative subschemes from non-commutative schemes via contraction in this context.
翻译:我们探索了联系计划与基于半确定性编程(SDP)对Lov\'{a}sz-Shrijver 升降和项目等级中组合优化问题的松动分析之间的某些联系。我们对稳定定置多管线松动的分析导致对德尔萨特和霍夫曼传统界限某些常规图谱的分层和稳定性数的界限,以及深脊椎变化图的概念 -- -- 我们所显示的一些关联计划自然产生的高度对称性图。我们还研究高压匹配问题的松动,并准确确定或提供这些放松的升降和项目等级的界限。我们对这些结果的证明也启发了对一般超配关系计划的研究。虽然这个计划一般不具有互换性,但我们说明了通过这一背景下的收缩从非调整计划获得通俗子化学的用处。