We present an implementation of a fully stage-parallel preconditioner for Radau IIA type fully implicit Runge--Kutta methods, which approximates the inverse of $A_Q$ from the Butcher tableau by the lower triangular matrix resulting from an LU decomposition and diagonalizes the system with as many blocks as stages. For the transformed system, we employ a block preconditioner where each block is distributed and solved by a subgroup of processes in parallel. For combination of partial results, we either use a communication pattern resembling Cannon's algorithm or shared memory. A performance model and a large set of performance studies (including strong scaling runs with up to 150k processes on 3k compute nodes) conducted for a time-dependent heat problem, using matrix-free finite element methods, indicate that the stage-parallel implementation can reach higher throughputs when the block solvers operate at lower parallel efficiencies, which occurs near the scaling limit. Achievable speedup increases linearly with number of stages and are bounded by the number of stages. Furthermore, we show that the presented stage-parallel concepts are also applicable to the case that $A_Q$ is directly diagonalized, which requires complex arithmetic or the solution of two-by-two blocks and sequentializes parts of the algorithm. Alternatively to distributing stages and assigning them to distinct processes, we discuss the possibility of batching operations from different stages together.


翻译:我们为Radau IIA 类型完全隐含的龙格-库塔方法推出了一个完全阶段和平行的预设条件,该预设条件通过LU分解和分解系统,以各个阶段的多个区块对系统进行分解和分解,使Butcher 台面的较低三角矩阵,与Butcher 台面上美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=美元=千分之一;对系统转型系统,我们使用一个区块的先决条件,每个区块由平行的进程分组分配和解决;对部分结果的结合,我们要么使用类似于Cannonon的算法或共享记忆的通信模式;一个业绩模型和一套大型的绩效研究(包括以3k compute 节点为3k 节点为至多150k 的流程进行强有力的缩放宽度计算方法),这些模型和一套大型的绩效研究的反差差差的三角矩阵,其相偏差的三角矩阵实施过程在区块解决问题时可以达到更高的分数;当区块解决问题时,在缩小的分级阶段和分级之间进行分级分析时,我们可直接讨论。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月24日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
0+阅读 · 2022年10月20日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员