Signature-based algorithms have brought large improvements in the performances of Gr\"obner bases algorithms for polynomial systems over fields. Furthermore, they yield additional data which can be used, for example, to compute the module of syzygies of an ideal or to compute coefficients in terms of the input generators. In this paper, we examine two variants of Buchberger's algorithm to compute Gr\"obner bases over principal ideal domains, with the addition of signatures. The first one is adapted from Kandri-Rody and Kapur's algorithm, whereas the second one uses the ideas developed in the algorithms by L. Pan (1989) and D. Lichtblau (2012). The differences in constructions between the algorithms entail differences in the operations which are compatible with the signatures, and in the criteria which can be used to discard elements. We prove that both algorithms are correct and discuss their relative performances in a prototype implementation in Magma.
翻译:基于签名的算法大大改进了列列“ obner 基础算法” 的性能。 此外, 这些算法还生成了额外的数据, 可用于计算理想的相交单元或计算输入生成器的系数。 在本文中, 我们检查了布奇伯格的两种变式算法, 用于计算主要理想域的 Gr\ “ obner 基础, 并添加了签名 。 第一种算法根据Kandri- Rody 和 Kapur 的算法进行了修改, 而第二种算法使用了L. Pan (1989年) 和 D. Lichtblau (2012年) 的算法中形成的想法。 算法的构造差异导致与签名兼容的操作和可用于丢弃元素的标准的差异。 我们证明两种算法都是正确的, 并在Magma 的原型实施中讨论它们的相对性能 。