In this paper we present general-purpose preconditioners for regularized augmented systems arising from optimization problems, and their corresponding normal equations. We discuss positive definite preconditioners, suitable for CG and MINRES. We consider "sparsifications" which avoid situations in which eigenvalues of the preconditioned matrix may become complex. Special attention is given to systems arising from the application of regularized interior point methods to linear or nonlinear convex programming problems.
翻译:在本文中,我们介绍了由于优化问题产生的正规化增强系统及其相应的正常方程式的普通用途先决条件;我们讨论了适用于CG和MINRES的正面明确先决条件;我们考虑了避免先决条件矩阵的精华值可能变得复杂的“分化”情况;特别注意了由于将正规化的内部点方法应用于线性或非线性连接编程问题而产生的系统。