In this paper, we analyze hashing from a worst-case perspective. To this end, we study a new property of hash families that is strongly related to d-perfect hashing, namely c-ideality. On the one hand, this notion generalizes the definition of perfect hashing, which has been studied extensively; on the other hand, it provides a direct link to the notion of c-approximativity. We focus on the usually neglected case where the average load \alpha is at least 1 and prove upper and lower parametrized bounds on the minimal size of c-ideal hash families. As an aside, we show how c-ideality helps to analyze the advice complexity of hashing. The concept of advice, introduced a decade ago, lets us measure the information content of an online problem. We prove hashing's advice complexity to be linear in the hash table size.
翻译:在本文中,我们从最坏的个案角度分析散列。 为此,我们研究一种与散装散装物密切相关的散列家庭的新财产, 即杂列物。 一方面, 这一概念概括了完美散列的定义, 已经对此进行了广泛研究; 另一方面, 它提供了与近似杂列概念的直接关联。 我们关注的是通常被忽视的个案, 平均负载 alpha 至少为1, 并且证明平均负载值在散列物家庭最小尺寸上层和下层。 顺便说一句, 我们展示了二元性如何帮助分析散列物的咨询复杂性。 十年前引入的咨询概念让我们衡量一个在线问题的信息内容。 我们证明, 在散列桌上的大小中, 我们的建议复杂性是线性的。