A vast amount of expert and domain knowledge is captured by causal structural priors, yet there has been little research on testing such priors for generalization and data synthesis purposes. We propose a novel model architecture, Causal Structural Hypothesis Testing, that can use nonparametric, structural causal knowledge and approximate a causal model's functional relationships using deep neural networks. We use these architectures for comparing structural priors, akin to hypothesis testing, using a deliberate (non-random) split of training and testing data. Extensive simulations demonstrate the effectiveness of out-of-distribution generalization error as a proxy for causal structural prior hypothesis testing and offers a statistical baseline for interpreting results. We show that the variational version of the architecture, Causal Structural Variational Hypothesis Testing can improve performance in low SNR regimes. Due to the simplicity and low parameter count of the models, practitioners can test and compare structural prior hypotheses on small dataset and use the priors with the best generalization capacity to synthesize much larger, causally-informed datasets. Finally, we validate our methods on a synthetic pendulum dataset, and show a use-case on a real-world trauma surgery ground-level falls dataset.


翻译:大量专家和领域知识被因果结构前科所捕捉,然而,在为一般化和数据综合目的测试此类前科前科时,却很少进行研究。我们提议了一个新型模型结构,即因果结构假设测试,它可以使用非对称、结构性因果知识,并使用深层神经网络来大致了解因果模式的功能关系。我们利用这些结构结构来比较结构前科,类似于假设测试,使用有意(非随机)的培训和测试数据进行分解。广泛的模拟表明分配外一般化错误作为因果结构先前假设测试的替代物的有效性,并为解释结果提供一个统计基线。我们表明,结构的变异版本,即因果结构变化测试,可以改善低神经神经系统系统的性能。由于模型的简单和低参数计,从业人员可以测试和比较小型数据集的先前结构假设,并使用前科的最佳概括能力来综合大得多、因果性知识的数据集。最后,我们验证了我们在合成前科前科数据库中采用的方法,并展示了真实的创伤性创伤。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员