Neural fields have emerged as a new paradigm for representing signals, thanks to their ability to do it compactly while being easy to optimize. In most applications, however, neural fields are treated like black boxes, which precludes many signal manipulation tasks. In this paper, we propose a new class of neural fields called polynomial neural fields (PNFs). The key advantage of a PNF is that it can represent a signal as a composition of a number of manipulable and interpretable components without losing the merits of neural fields representation. We develop a general theoretical framework to analyze and design PNFs. We use this framework to design Fourier PNFs, which match state-of-the-art performance in signal representation tasks that use neural fields. In addition, we empirically demonstrate that Fourier PNFs enable signal manipulation applications such as texture transfer and scale-space interpolation. Code is available at https://github.com/stevenygd/PNF.
翻译:神经场已经成为一个代表信号的新范例, 因为它们有能力在最优化的环境下巧妙地完成信号。 但是, 在大多数应用中, 神经场被像黑盒一样对待, 从而排除了许多信号操作任务 。 在本文中, 我们提出一个新的神经场类别, 叫做多神经场 。 PNF 的主要优点是, 它可以代表一个信号, 作为若干可操作和可解释的组成部分的构成, 而不会失去神经场代表的优点 。 我们开发了一个分析和设计 PNF 的一般理论框架 。 我们使用这个框架来设计 Fourier PNF, 它将匹配使用神经场的信号演示任务中最先进的性能 。 此外, 我们从经验上证明 Fourier PNF 能够让信号操作应用, 如纹理传输和空间干涉等。 代码可在 https://github.com/stevenygd/PNF 上查阅 。