The increase in the number of counterfeit and recycled microelectronic chips in recent years has created significant security and safety concerns in various applications. Hence, detecting such counterfeit chips in electronic systems is critical before deployment in the field. Unfortunately, the conventional verification tools using physical inspection and side-channel methods are costly, unscalable, error-prone, and often incompatible with legacy systems. This paper introduces a generic non-invasive and low-cost counterfeit chip detection based on characterizing the impedance of the system's power delivery network (PDN). Our method relies on the fact that the impedance of the counterfeit and recycled chips differs from the genuine ones. To sense such impedance variations confidently, we deploy scattering parameters, frequently used for impedance characterization of RF/microwave circuits. Our proposed approach can directly be applied to soldered chips on the system's PCB and does not require any modifications on the legacy systems. To validate our claims, we perform extensive measurements on genuine and aged samples from two families of STMicroelectronics chips to assess the effectiveness of the proposed approach.


翻译:近年来,仿造和再循环微电子芯片数量的增加在各种应用中造成了严重的安保和安全问题。因此,在部署实地之前,在电子系统中发现这种假冒芯片至关重要。不幸的是,使用实物检查和侧道方法的常规核查工具费用昂贵、无法伸缩、容易出错,而且往往与遗留系统不相容。本文件根据系统电力输送网络的阻力特征,采用了通用的非侵入和低成本的假冒芯片检测方法。我们的方法依据的事实是,假冒和再循环芯片的阻力与真实的芯片不同。要有信心地感觉到这种阻力变化,我们部署散射参数,经常用于阻塞RF/微波电路特征。我们提议的方法可以直接适用于系统多氯联苯上的焊接芯片,不需要对遗留系统作任何修改。为了证实我们的说法,我们对STMicroephics芯片的两个家族的真实和老旧样品进行了广泛的测量,以评估拟议方法的有效性。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员