Causal mediation analysis, pleiotropy analysis, and replication analysis are three highly popular genetic study designs. Although these analyses address different scientific questions, the underlying inference problems all involve large-scale testing of composite null hypotheses. The goal is to determine whether all null hypotheses - as opposed to at least one - in a set of individual tests should simultaneously be rejected. Various recent methodology has been proposed for the aforementioned situations, and an appealing empirical Bayes strategy is to apply the popular two-group model, calculating local false discovery rates (lfdr) for each set of hypotheses. However, such a strategy is difficult due to the need for multivariate density estimation. Furthermore, the multiple testing rules for the empirical Bayes lfdr approach and conventional frequentist z-statistics can disagree, which is troubling for a field that ubiquitously utilizes summary statistics. This work proposes a framework to unify two-group testing in genetic association composite null settings, the conditionally symmetric multidimensional Gaussian mixture model (csmGmm). The csmGmm is shown to demonstrate more robust operating characteristics than recently-proposed alternatives. Crucially, the csmGmm also offers strong interpretability guarantees by harmonizing lfdr and z-statistic testing rules. We extend the base csmGmm to cover each of the mediation, pleiotropy, and replication settings, and we prove that the lfdr z-statistic agreement holds in each situation. We apply the model to a collection of translational lung cancer genetic association studies that motivated this work.
翻译:暂无翻译