The collaborative reasoning for understanding each image-question pair is very critical but under-explored for an interpretable Visual Question Answering (VQA) system. Although very recent works also tried the explicit compositional processes to assemble multiple sub-tasks embedded in the questions, their models heavily rely on the annotations or hand-crafted rules to obtain valid reasoning layout, leading to either heavy labor or poor performance on composition reasoning. In this paper, to enable global context reasoning for better aligning image and language domains in diverse and unrestricted cases, we propose a novel reasoning network called Adversarial Composition Modular Network (ACMN). This network comprises of two collaborative modules: i) an adversarial attention module to exploit the local visual evidence for each word parsed from the question; ii) a residual composition module to compose the previously mined evidence. Given a dependency parse tree for each question, the adversarial attention module progressively discovers salient regions of one word by densely combining regions of child word nodes in an adversarial manner. Then residual composition module merges the hidden representations of an arbitrary number of children through sum pooling and residual connection. Our ACMN is thus capable of building an interpretable VQA system that gradually dives the image cues following a question-driven reasoning route and makes global reasoning by incorporating the learned knowledge of all attention modules in a principled manner. Experiments on relational datasets demonstrate the superiority of our ACMN and visualization results show the explainable capability of our reasoning system.
翻译:理解每个图像问题对应方的协作推理非常关键,但对于可解释的视觉问题解答(VQA)系统,我们却未充分探索到一个解释性视觉问题解答(VQA)系统的合作推理。虽然最近的一些工作也尝试了明确的构成过程,以汇集问题中所含的多个子任务,但其模型严重依赖说明或手工设计的规则以获得有效的推理布局,导致工作繁重或组成推理工作表现不佳。在本文件中,为了使全球背景推理能够更好地协调不同和无限制案件中的图像和语言领域,我们提出了一个新的推理网络,称为Aversarial 构成模块(ACMN) 。这个网络由两个协作模块组成:i) 一个对立式的注意模块,以利用当地视觉证据对问题中每个词进行分解;ii) 一个残余的构成模块,以整理以前挖掘的证据。鉴于每个问题的依赖性偏差,对抗性关注模块逐渐发现一个单词的突出区域,即以对抗性合并儿童词节点;然后,残余构成模块,通过组合和剩余连接,将一个任意儿童人数的表示,通过汇总和剩余的推理系统来解释。我们AMNMW的递化的推理学的推理系统,一个逐步地展示了我们所学的推理的推理的推理,从而将整个的推导了我们所研解了我们所研判的推的推的推论的推理系统显示的推理系统上的所有动了我们所推理。