Suppose we wish to estimate $\#H$, the number of copies of some small graph $H$ in a large streaming graph $G$. There are many algorithms for this task when $H$ is a triangle, but just a few that apply to arbitrary $H$. Here we focus on one such algorithm, which was introduced by Kane, Mehlhorn, Sauerwald, and Sun. The storage and update time per edge for their algorithm are both $O(m^k/(\#H)^2)$, where $m$ is the number of edges in $G$, and $k$ is the number of edges in $H$. Here, we propose three modifications to their algorithm that can dramatically reduce both the storage and update time. Suppose that $H$ has no leaves and that $G$ has maximum degree $\leq m^{1/2 - \alpha}$, where $\alpha > 0$. Define $C = \min(m^{2\alpha},m^{1/3})$. Then in our version of the algorithm, the update time per edge is $O(1)$, and the storage is approximately reduced by a factor of $C^{2k-t-2}$, where $t$ is the number of vertices in $H$; in particular, the storage is $O(C^2 + m^k/(C^{2k-t-2} (\#H)^2))$.


翻译:假想我们想要估算$H$, 某小图一美元, 以大流图一美元计算。 当$H是一个三角时, 这项任务有许多算法, 但只有少数算法适用于任意的$H美元。 这里我们侧重于一个这样的算法, 由Kane、 Mehlhorn、 Sauerwald 和 Sun 介绍。 其算法的每个边缘的存储和更新时间为$Ok/ ( ⁇ H)2美元。 定义$C = min( m_2H) 美元, 美元是 $的边缘数 。 在此, 我们建议对其算法进行三处修改, 以大幅减少存储和更新时间。 假设$H$没有落叶, $G$最高为$leq m ⁇ 2 - parpha} 。 $alpha > 0。 定义$C = $( m _ _2H) 美元, m _1/3} 美元 。 在我们版本的算法中, 更新的时间是 美元的储量在 $C 里, 大约减少 美元 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
242+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
162+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年2月4日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
242+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
162+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员