We study sequential probability assignment in the Gaussian setting, where the goal is to predict, or equivalently compress, a sequence of real-valued observations almost as well as the best Gaussian distribution with mean constrained to a given subset of $\mathbf{R}^n$. First, in the case of a convex constraint set $K$, we express the hardness of the prediction problem (the minimax regret) in terms of the intrinsic volumes of $K$; specifically, it equals the logarithm of the Wills functional from convex geometry. We then establish a comparison inequality for the Wills functional in the general nonconvex case, which underlines the metric nature of this quantity and generalizes the Slepian-Sudakov-Fernique comparison principle for the Gaussian width. Motivated by this inequality, we characterize the exact order of magnitude of the considered functional for a general nonconvex set, in terms of global covering numbers and local Gaussian widths. This implies metric isomorphic estimates for the log-Laplace transform of the intrinsic volume sequence of a convex body. As part of our analysis, we also characterize the minimax redundancy for a general constraint set. We finally relate and contrast our findings with classical asymptotic results in information theory.
翻译:我们在高山环境中研究测序概率分配,目标是预测或相当压缩实际价值观测的序列,几乎以及最佳高山分布,平均限制在某个子集$mathbf{R<unk> n$。首先,在Convex限制设定为$K$的情况下,我们从内在量为$K美元的角度来表达预测问题(迷你最大遗憾)的难度;具体地说,它相当于威尔斯从 convex 几何学中发挥作用的对数。然后,我们为一般非conves 案运行的威尔斯建立了比较性不平等,这强调了该数量量的计量性质,并概括了高山宽度的比较原则。受这种不平等的驱使,我们从全球覆盖数和地方高斯宽度的角度来描述所考虑的功能的精确程度。这意味着对逻辑-Lax 功能的对比,这强调了该数量量的计量性,并概括了Slepian-Sudakov-Ferniqueque 原则, 以及我们作为常规数据序列的典型分析结果。我们最终将一个典型的缩缩定顺序与我们之间的对比。</s>