Model predictive control (MPC) has shown great success for controlling complex systems such as legged robots. However, when closing the loop, the performance and feasibility of the finite horizon optimal control problem (OCP) solved at each control cycle is not guaranteed anymore. This is due to model discrepancies, the effect of low-level controllers, uncertainties and sensor noise. To address these issues, we propose a modified version of a standard MPC approach used in legged locomotion with viability (weak forward invariance) guarantees. In this approach, instead of adding a (conservative) terminal constraint to the problem, we propose to use the measured state projected to the viability kernel in the OCP solved at each control cycle. Moreover, we use past experimental data to find the best cost weights, which measure a combination of performance, constraint satisfaction robustness, or stability (invariance). These interpretable costs measure the trade off between robustness and performance. For this purpose, we use Bayesian optimization (BO) to systematically design experiments that help efficiently collect data to learn a cost function leading to robust performance. Our simulation results with different realistic disturbances (i.e. external pushes, unmodeled actuator dynamics and computational delay) show the effectiveness of our approach to create robust controllers for humanoid robots.
翻译:模型预测控制(MPC)在控制像脚机械人这样的复杂系统方面表现出了巨大的成功。 但是,当关闭环圈时,在每个控制周期中解决的有限地平线最佳控制问题(OCP)的性能和可行性不再得到保证。 这是因为模型差异、 低层控制器的影响、 不确定性和传感器噪音。 为了解决这些问题, 我们提议了在具有可行性( 向前偏差弱的) 保证的腿移动中所使用的标准 MPC 方法的修改版。 在这个方法中, 我们提议使用每个控制周期中解决的有限地平线最佳控制问题(OCP)的性能和可行性预测状态。 此外, 我们使用以往的实验数据来找到最佳的成本权重, 衡量性能、 制约满意度稳健和稳定性( 逆差) 的组合。 为了这个目的, 我们使用Bayesian优化(BO) 来系统设计实验, 帮助高效率地收集数据, 以便学习一个导致稳健性性性工作的成本函数。 我们的模拟结果, 以不同的现实性震动性机能模型来显示我们的机器人的机能变。