Misinformation spreading becomes a critical issue in online conversation. Detecting rumours is an important research topic in social media analysis. Most existing methods, based on Convolutional Neural Networks (CNNs) and Graph Neural Networks (GNNs), do not make use of the relationship between the global and local information of a conversation for detection. In this paper, we propose a Transformer-Graph Neural Network (TGNN), to fuse the local information with the global representation, through an attention mechanism. Then, we extend the proposed TGNN for multimodal rumour detection, by considering the latent relationship between the multimodal feature and node feature to form a more comprehensive graph representation. To verify the effectiveness of our proposed method for multimodal rumour detection, we extend the existing PHEME-2016, PHEME-2018, and Weibo data sets, by collecting available and relevant images for training the proposal framework. To improve the performance of single-modal rumour detection, i.e., based on text input only, a teacher-student framework is employed to distil the knowledge from the multimodal model to the single-modal model. Experimental results show that our proposed TGNN can achieve state-of-the-art performance and generalization ability evaluated on the PHEME-2016, PHEME-2018, and Weibo data sets.


翻译:发现谣言是社交媒体分析的一个重要研究课题。基于革命神经网络(CNNs)和图形神经网络(GNNs)的现有方法大多不利用全球和地方对话信息之间的关系进行检测。在本文中,我们提议建立一个变压器-阵列神经网络(TGNN),通过关注机制,将当地信息与全球代表性相结合。然后,我们扩大拟议的TGNN, 用于多式联运谣言检测,考虑多式联运特征和节点特征之间的潜在关系,以形成更全面的图表代表。为了核实我们拟议的多式联运谣言检测方法的有效性,我们扩大了现有的PHEME-2016、PHEME-2018和Weibo数据集,收集了可用于培训提案框架的可用和相关图像。为了改进单一模式谣言检测的性能,即仅以文本输入为基础,将拟议的教师-学习框架用于多式联运模型和节点20节特征特征检测,以形成更全面的图表代表。为了验证我们拟议的多式联运模式与单一模式的20-20ME模型之间的知识,我们实验性结果显示我们拟议的T-GNHE-HE-HA数据库业绩,我们提议的系统能够实现T-G-HE-HE-HE-DA总的成绩。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员