Deep generative models can synthesize photorealistic images of human faces with novel identities. However, a key challenge to the wide applicability of such techniques is to provide independent control over semantically meaningful parameters: appearance, head pose, face shape, and facial expressions. In this paper, we propose VariTex - to the best of our knowledge the first method that learns a variational latent feature space of neural face textures, which allows sampling of novel identities. We combine this generative model with a parametric face model and gain explicit control over head pose and facial expressions. To generate complete images of human heads, we propose an additive decoder that adds plausible details such as hair. A novel training scheme enforces a pose-independent latent space and in consequence, allows learning a one-to-many mapping between latent codes and pose-conditioned exterior regions. The resulting method can generate geometrically consistent images of novel identities under fine-grained control over head pose, face shape, and facial expressions. This facilitates a broad range of downstream tasks, like sampling novel identities, changing the head pose, expression transfer, and more. Code and models are available for research on https://mcbuehler.github.io/VariTex.
翻译:深基因模型可以将人类面部的光现实图像与新特征合成。然而,这些技术的广泛应用所面临的一项关键挑战是如何对具有真实意义的参数提供独立的控制:外观、头部姿势、脸形和面部表情。在本文件中,我们建议VariTex——根据我们所知的最好方法,首先学习神经面质的变异潜在特征空间,从而可以对新特征进行取样。我们把这种基因模型与面部模范结合起来,并获得对头部和面部表情的清晰控制。为了生成完整的人头部图像,我们建议添加一个添加貌似细节的添加解码器,如头发等。一个新颖的培训计划将执行一个与面部独立的潜在空间,并由此在潜在代码和外表调节区域之间进行一对一的绘图。由此产生的方法可以在头部面部、面部和面部表达方式的精细控制下产生几何一致的新身份图像。这有利于广泛的下游任务,例如取样新身份,改变头部面容、表达方式转移和更多的图象。代码和模型可供研究。