Remotely sensed imagery interpretation (RSII) faces the three major problems: (1) objective representation of spatial distribution patterns; (2) edge uncertainty problem caused by downsampling encoder and intrinsic edge noises (e.g., mixed pixel and edge occlusion etc.); and (3) false detection problem caused by geometric registration error in change detection. To solve the aforementioned problems, uncertainty-diffusion-model-based high-Frequency TransFormer network (UDHF2-Net) is the first to be proposed, whose superiorities are as follows: (1) a spatially-stationary-and-non-stationary high-frequency connection paradigm (SHCP) is proposed to enhance the interaction of spatially frequency-wise stationary and non-stationary features to yield high-fidelity edge extraction result. Inspired by HRFormer, SHCP proposes high-frequency-wise stream to replace high-resolution-wise stream in HRFormer through the whole encoder-decoder process with parallel frequency-wise high-to-low streams, so it improves the edge extraction accuracy by continuously remaining high-frequency information; (2) a mask-and-geo-knowledge-based uncertainty diffusion module (MUDM), which is a self-supervised learning strategy, is proposed to improve the edge accuracy of extraction and change detection by gradually removing the simulated spectrum noises based on geo-knowledge and the generated diffused spectrum noises; (3) a frequency-wise semi-pseudo-Siamese UDHF2-Net is the first to be proposed to balance accuracy and complexity for change detection. Besides the aforementioned spectrum noises in semantic segmentation, MUDM is also a self-supervised learning strategy to effectively reduce the edge false change detection from the generated imagery with geometric registration error.
翻译:暂无翻译