One of the leading candidates for near-term quantum advantage is the class of Variational Quantum Algorithms, but these algorithms suffer from classical difficulty in optimizing the variational parameters as the number of parameters increases. Therefore, it is important to understand the expressibility and power of various ans\"atze to produce target states and distributions. To this end, we apply notions of emulation to Variational Quantum Annealing and the Quantum Approximate Optimization Algorithm (QAOA) to show that QAOA is outperformed by variational annealing schedules with equivalent numbers of parameters. Our Variational Quantum Annealing schedule is based on a novel polynomial parameterization that can be optimized in a similar gradient-free way as QAOA, using the same physical ingredients. In order to compare the performance of ans\"atze types, we have developed statistical notions of Monte-Carlo methods. Monte-Carlo methods are computer programs that generate random variables that approximate a target number that is computationally hard to calculate exactly. While the most well-known Monte-Carlo method is Monte-Carlo integration (e.g. Diffusion Monte-Carlo or path-integral quantum Monte-Carlo), QAOA is itself a Monte-Carlo method that finds good solutions to NP-complete problems such as Max-cut. We apply these statistical Monte-Carlo notions to further elucidate the theoretical framework around these quantum algorithms.


翻译:近期量子优势的主要候选者之一,是量子优势的变异性量子 Algorithms(QAOA)等级,但是这些算法在随着参数数量的增加而优化变异性参数参数方面存在典型的困难。 因此, 理解各种 ans\ atze 的可表现性和力量非常重要, 以生成目标状态和分布。 为此, 我们将模拟概念应用到变异性量量量量子Annaaling 和 Quantum Aportimal 优化性Algorithm(QAOA) 的等级, 以显示QAOA在优化变异性离子值参数表时, 在优化变异性值参数时, 这些变异性 QA QA 的变异性量子 Annaalaling 时间表基于一种新颖的多度参数化, 可以与 QAOOA 相近似, 。 为了比较“ 量子” 类同型的解算法, 我们开发了蒙特- Carlo 方法的统计概念。 Monte- Carlo 方法是产生随机性变数的计算机程序, 而 Conte- Cal- dal- dal- dal- dal- dal- dol- dal- drol 这样的计算方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
0+阅读 · 2023年1月26日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员